what is on either side of visible light on the EM spectrum? But light . Light differs from other forms of electromagnetic waves only in its wavelength, its frequency, and the amount of ________________it carries. Describe the appearance of the air . Potassium3.6mEq/L(3.6mmol/L)Sodium138mEq/L(138mmol/L)Chloride100mEq/L(100mmol/L)CO228mEq/L(28mmol/L)Glucose112mEq/L(6.2mmol/L)Creatinine0.7mg/dL(61.9mcmol/L)Bloodureanitrogen(BUN)18mg/dL(6.4mmol/L)Magnesium1.9mEq/L(0.95mmol/L)\begin{array}{ll}\text { Potassium } & 3.6 \mathrm{mEq} / \mathrm{L}(3.6 \mathrm{mmol} / \mathrm{L}) \\ \text { Sodium } & 138 \mathrm{mEq} / \mathrm{L}(138 \mathrm{mmol} / \mathrm{L}) \\ \text { Chloride } & 100 \mathrm{mEq} / \mathrm{L}(100 \mathrm{mmol} / \mathrm{L}) \\ \mathrm{CO}_2 & 28 \mathrm{mEq} / \mathrm{L}(28 \mathrm{mmol} / \mathrm{L}) \\ \text { Glucose } & 112 \mathrm{mEq} / \mathrm{L}(6.2 \mathrm{mmol} / \mathrm{L}) \\ \text { Creatinine } & 0.7 \mathrm{mg} / \mathrm{dL}(61.9 \mathrm{mcmol} / \mathrm{L}) \\ \text { Blood urea nitrogen (BUN) } & 18 \mathrm{mg} / \mathrm{dL}(6.4 \mathrm{mmol} / \mathrm{L}) \\ \text { Magnesium } & 1.9 \mathrm{mEq} / \mathrm{L}(0.95 \mathrm{mmol} / \mathrm{L})\end{array} A spectrometer's detector . He studied the photosynthesis of purple sulfur bacteria. when does this take place? Electromagnetic radiation, as the name suggests, describes fluctuations of electric and magnetic fields, transporting energy at . what is this called: matter can neither be created nor destroyed; what is this called when applied to energy? Applications and Investigations In Earth Science, Dennis G. Tasa, Edward J. Tarbuck, Frederick K. Lutgens. M.P. Electromagnetic radiation is generated by a moving electric charge, that is, by an electric current. M.P. returns in 1 month for her medication management appointment. It includes electromagnetic radiation whose wavelength is between about 400 nm and 700 nm. Constructive interference occurs whenever the difference in paths from the two slits to a point on the screen equals an integral number of wavelengths (0, , 2,). what sometimes has higher energy than x rays? c. increase in temp. what is the wave equation? d. detects light within a narrow range of the electromagnetic range. Infrared astronomers use microns (millionths of a meter) for wavelengths, so their part of the EM spectrum falls in the range of 1 to 100 microns. what is the numerical value for J of planck's constant? in what fashion? A short large mode field diameter gain fiber (DCF-30/250) was adopted to efficiently reduce the influence of nonlinear effects.The maximum pulse energy of 12.36 J, 60 ps pulses with a narrow bandwidth was obtained . This path difference guarantees that crests . What part of the spectrometer ensures only a narrow range of wavelengths passes through the sample? Record the absorbance and transmittance at. Take a moment to familiarize yourself with the layout. The larger the resonance width of a driven series RLC circuit is, the larger the QQQ factor for the circuit is. Infrared and optical astronomers generally use wavelength. what is described by this process: photon of light strikes object, sets objects molecules into vibration, orbital electrons of some atoms of certain molecules are excited to an energy level higher than normal, this energy is re-emitted as another photon of light, it is reflect. 2(a). Her most recent basic metabolic panel (BMP) and fasting lipids are within normal limits. Over the past several months, he has experienced increasing shortness of breath, hoarseness, and odynophagia. when light is emitted from a source such as the sun or light bulb, ______ decreases rapidly with distance from the source, decrease in intensity is _________ proportional to square of distance of object from source, reason for rapid decrease in ____ with increasing _____ is that the total light emitted is spread out over an increasingly large area. Note that the slope of the line of the standard curve in Figure 1.2. The term light usually refers to visible light, but this is not the only form of EMR. what are emitted from the electron cloud (outside) of an artificially stimulated atom? If you were in the lab and measured an absorbance greater that 2.00, what should you do? We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. what is the unit of frequency? what is an example? c. He measured the effect of different light intensities, CO2 concentrations and temperatures on the rate of photosynthesis. 7.3.20: Describe that something can be "seen" when light waves emitted or reflected by it enter the eye . The most familiar type of electromagnetic wave is______________________. what are x-rays usually identified by? Be certain to differentiate between nouns and adjectives in your definitions. Infrared waves, or infrared light, are part of the electromagnetic spectrum. The provider decreases M.P's HCTZ dose to 12.5 mg PO daily and adds a prescription for benazepril (Lotensin) 5 mg daily. His chest xxx-ray film is normal except for changes related to chronic tobacco use. is instructed to return to the clinic in 1 week to have her blood work checked. An 8-bit sensor can produce what range of brightness values? The light waves will be traveling the same distance, so they will be traveling the . what is a wave of moving molecules? We can describe them by their frequency, wavelengths . what does it stand for? High-frequency sound waves are perceived as high-pitched sounds, while low-frequency sound waves are perceived as low-pitched sounds. Collects sound waves B) All pigments in the chloroplast absorb virtually all of the green wavelengths of visible. Light is a narrow range of electromagnetic waves that the eye can detect. The large mass extends and is fixed to the left true vocal cord. each photon can be represented as a ____ __ _____ consisting of varying electric and magnetic fields that travel at the ____ __ ____. Decrease the concentration of the drink solution to 50 mM. (2) a characteristic of the oscillation of the particle. Most likely to elicit a response from a sleeping person a. waving b. shaking the bed c. thinking d. making faces ________________waves form because there is friction between sea wind and water. However, instead of a narrow band of wavelengths none of which is dominant as in the case of the filter, there is a much narrower linewidth about a dominant center frequency emitted from the laser. what are x-rays created with? The wavelengths of the visible light range between 400-700 nanometers, this is between the infrared having longer wavelengths and the ultraviolet having shorter wavelengths. where T is the (dimensionless) transmittance of the filter at that wavelength.. Absorptive. a. CO2. similar to the eV what is also a unit of energy? In plants, algae, and cyanobacteria, pigments are the means by which the energy of sunlight is captured for photosynthesis. what is an example? how do they travel? what is the numerical value for eV of planck's constant? what are the 3 degrees as to which objects absorb light? We see the sky as blue in the middle of the day because of. Hysterectomy, age 48 years, January 2: 150 / 92 Visible Spectrum. E=hf; E=photon energy, in eV; h=planck's constant, in eV; f=photon frequency, in Hz. The reason behind this is that outside this range of wavelengths, the designed low . Biology questions and answers. Box the word that means knowing through perception or reasoning. what is a quantum of electromagnetic energy? Many _____________ of sound waves depend on their compressions and rarefactions. morning) Move the ruler to measure the path the light takes through the sample. The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can view. February 28: 140/90. For destructive interference it will be an integer number of whole wavelengths plus a half wavelength. Mediums like Light, Water, and Sound all travel as waves. Each colour within the visible light spectrum has its own narrow band of wavelength and frequency. x ray photons, light photons and other electromagnetic energy. Devices and mechanism. rayleigh scatterign. it _____ any substance is shines on. Describe the motion of the air particles in the sound diagram. She tells you she is feeling fine and does not have any side effects from her new medication. Using its preset wavelength, measure the absorbance with different pathlengths. A ____________wave is called a seismic wave. The infrared region of the spectrum consists of radiation with wavelengths between 700 nm and 1 mm. 00 m and at . 's BP continues to be high, the provider decides to start another antihypertensive drug and recommends that she try again with the HCTZ, taken in the mornings. The particles move faster and collide more often. What does that have to do with my blood pressure?" c. detects all wavelengths. what 2 types of invisible light does sunlight include? Narrow wavelength-division multiplexing systems demand large bit rates and single longitudinal and transverse modes. the wavelength that corresponds to the peak intensity gets shorter The graph for a hot star, such as a blue supergiant, peaks over a shorter wavelength than a cooler star such as a red giant. This relationship is used extensively in a variety of chemical analyses, from simple test kits that produce a color in the presence of certain analytes to high-end liquid chromatography instrumentation. which form of the mass energy formula do use when wavelength is given in the problem? red band. energy passing thru a target material describes what. Electromagnetic waves can come in many different wavelengths and different frequencies, so long as the product of the wavelength and frequency of a given wave equals the speed of light (that is, f = c). The entire electromagnetic spectrum is much more than just visible light. Sound waves produced by vibrations between about 20 Hz and 20,000 Hz, 37. because there is only a slight vibration. At the other end of the spectrum toward red, the wavelengths are longer and have lower energy (Figure 3). In an optical spectroscope, the detector is your eye, which senses the different colors and the presence of . Objectives: State the basic mechanics of the spectrophotometer Describe the basic principles of spectrophotometry, including transmittance and Consult a medical dictionary for the current meanings of these word. Ch 1: Essential Concepts of Radiologic Science, Bushong Ch 14 - Computers in Medical Imaging, Chapter 4 (Part 1) Electricity and Magnetism, Donald A. McQuarrie, Ethan B Gallogly, Peter A Rock. what is an example? how is it measured? Has a spiral shape and changes sound waves to nerve signals 23. Where A is absorbance, is molar absorptivity, b is the path length of the cell and C is the concentration of the solution. J.B., a well-known 62-year-old homeless man with a history of chronic alcohol use, comes to you before a left radical neck dissection with total laryngectomy and placement of a permanent tracheostomy to treat stage III hypopharyngeal cancer. In terms of frequency, this corresponds to a band in the vicinity of 400-790 terahertz. what is the difference in wavelength directly proportional to? bundle of energy; speed of light; frequency and wavelength. what is it symbolized by? ( c) Compute the internal resistance of the battery. what are 2 words used to described visual appearance of anatomical structures? 4. The visible spectrum is defined as the total array of colors the human eye can see, and it is another way to describe visible light. Embodiments in accordance with the present invention attain narrow spectral filtering capability over a . Figure 3. Single-mode long-wavelength (LW) vertical-cavity surface-emitting lasers (VCSELs) present an inexpensive alternative to DFB-lasers for data communication in next-generation giga data centers, where optical links with large transmission distances are required. Monochromatic definition, of or having one color. what is energy emitted from a source and transferred thru space? See more. Wavelength selectors limit the radiation absorbed by a sample to a certain wavelength or a narrow band of wavelengths. Determine the molar absorptivity of a compound based on its absorbance behavior according to Beers Law. Mother, died at age 65 years of CVA The visible light lies in between the infrared and ultraviolet range of wavelengths. _________________ from the wind transfers to the water as the water moves toward land. The _________ __________ includes the entire range of electromagnetic energy. Which electromagnetic wave has the longest wavelength? which form of the mass energy formula do you use when frequency is given in the problem? Young's double-slit experiment. Your eyes are able to _____ only a narrow range of the wavelengths produced by electromagnetic waves.. 25. Where your observations above consistent with Beers Law? Molar absorptivity is characteristic of the analyte molecules and depends on the wavelength of light. expression to create the following vectors: (a), a=[1111]a = \left[ \begin{array} { l l l l } { 1 } & { 1 } & { 1 } & { 1 } \end{array} \right] what extends from a short wavelength of violet radiation thru green and yellow to long wavelength of red? __________ are normally expressed in the form of rules. A narrow range of wavelengths describes a: Band. v=[8642], Then use the vector in a mathematical Electromagnetic spectrum. The wavelength of a wave gets ______________as the frequency increases. what is it considered? Other electromagnetic radiations are either too small or too large to capture for the human eye and are out of biological limitations. what is the smallest quantity of any type of electromagnetic energy? what is present all around is in a field or state of energy? What is your response ? However, our study shows that for the wavelengths outside this range, the proposed cloak does not work well. Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. Transmittance is often expressed as a percent (T x 100%), but most often we use absorbance (A). PotassiumSodiumChlorideCO2GlucoseCreatinineBloodureanitrogen(BUN)Magnesium3.6mEq/L(3.6mmol/L)138mEq/L(138mmol/L)100mEq/L(100mmol/L)28mEq/L(28mmol/L)112mEq/L(6.2mmol/L)0.7mg/dL(61.9mcmol/L)18mg/dL(6.4mmol/L)1.9mEq/L(0.95mmol/L). The effect of temperature on liquids and solids, 43. frequencies between 1,000 and 4,000 HZ, The ear is most sensitive to these frequencies. When would using a long pathlength be desirable? 48. 44. Select a solute and concentration. Electromagnetic radiation in this range of wavelengths is called visible light or simply light.A typical human eye will respond to wavelengths from about 380 to about 750 nanometers. Visible light - that which is detectable by the human eye - consists of wavelengths ranging from approximately 780 nanometer (7.80 x 10-7 . Light itself is a form of electromagnetic . Visible spectrum. . what does the velocity of sound depend on? Optical filtering was first done with liquid-filled, glass-walled cells; [citation needed] they are still used for special purposes. Red light has a wavelength of ~700 nm, and a frequency of ~4.3*10 14 Hz. Electromagnetic waves with shorter wavelengths and . For the first time, the TCR-CC filter is used to select a single mode from dense longitudinal modes. She is instructed to monitor her BP at least twice a week and return for a medication management appointment in 1 month with her list of BP readings. 33. A monochromator (a device that allows narrow bands of light wavelengths to pass) is then used to scan the fluorescence emission intensity over the entire series of emission wavelengths. This page titled Beers Law is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Contributor. attenuation of light; frosted glass; translucent. what is it described as? 21. The relative intensity of the fluorescence is measured at the various wavelengths to plot the emission spectrum, as illustrated in Figure 1(b). x ray and gamma rays have the highest what? lowest? It is considered poor analytical practice to use absorbance values that exceed 2. What law governs this interaction? The entire electromagnetic spectrum is extremely broad, ranging from low energy radio waves with wavelengths that are measured in meters, to high energy gamma rays with wavelengths that are less than 1 x 10-11 meters. The interionic distances of several alkali halide crystals are as follows: Plot lattice energy versus the reciprocal interionic distance. (3) a probability wave. Standards7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. range of optical absorption of laser radiation in the metal, photon-electron interaction occurs, which re- sults in absorption of electromagnetic energy, which 1.1). if the word "equivalence" is in the problem which planck's constant do you use? is a 65 -year-old African American woman who comes to the clinic for a follow-up visit. Describe the appearance of the air particles in areas of compression and rarefaction. 1. Legal. A detector is simply a device that senses and measures the incoming light. . 40. they collide less often than particles in a liquid or a solid so it takes longer to transfer sound energy from one particle to another. Why? 2. It encompasses a range of wavelengths of energy that our human eyes can't see. Has 3 main parts (outer, middle and inner ear), 1. Brother, alive, age 70 years, has coronary artery disease (CAD), HTN, type 2 diabetes mellitus (DM), Married for 45 years, 2 children, alive and well, 6 grandchildren what described the relationship between radiation intensity and distance from the radiation source? 34. v=f x lambda; velocity=frequency x wavelength. When the emitted light is passed through a prism, only a few narrow lines of particular wavelengths, called a line spectrum, are observed rather than a continuous range of wavelengths (Figure \(\PageIndex{1}\)). 9. During today's visit, M.P. Ham operators? The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.. He grew a willow in a pot keeping an exact record of the weight of the soil and the tree over several years. a narrow range of wavelengths describes a. band. Broad range wavelength tuning in distributed Bragg . 5. This region of the spectrum is divided into what do they exist with? What is the visible light spectrum? photons interact with matter most easily when matter is about the same size as what? The visible light spectrum is the section of the electromagnetic radiation spectrum that is visible to the human eye. 20. We demonstrated the generation of narrow spectral bandwidth, high energy picosecond pulses from a low repetition rate SESAM mode-locked laser seeded Yb-doped fiber MOPA system. Construct a spectrum from absorbance measurements at various concentrations. Ultraviolet (UV) radiation that reaches the Earth's surface is in wavelengths between 290 and 400 nm (nanometers, or billionths of a meter). although photons of visible light travel in straight lines, their course can be ______ when they pass from one transparent medium to another. a photon of x radiation and a photon of visible light are basically the same except x radiation has higher ______ and shorter ______ than visible light. For electromagnetic energy __________ and __________ are inversely proportional? A remote sensing device simultaneously measuring 5 bands of energy wavelengths would be capable of producing which type of imagery? 13. a=[1111], b=[182162142122]b = \left[ \frac { 1 } { 8 ^ { 2 } } \frac { 1 } { 6 ^ { 2 } } \frac { 1 } { 4 ^ { 2 } } \frac { 1 } { 2 ^ { 2 } } \right] The wavelength for laser treatment can be selected from the wavelength band covered by the optical setup in Fig. what is the center of an aerial photo referred to as? What is the term for a narrow range of wavelengths. A helium-neon laser ( = 633 n m) (\lambda=633 \mathrm{~nm}) ( = 633 nm) is built with a glass tube of inside diameter 1.0 m m 1.0 \mathrm{~mm} 1.0 mm, as shown in figure mentioned.One mirror is partially transmitting to allow the laser beam out. 42. as liquids and solids cool, the molecules slow down and move closer. visible light, gamma radiation and radio frequency. The emission spectrum of burning fuel or other molecules may also be used to example its composition. An emission spectrum is unique to each element. Visible light makes up just a small part of the full electromagnetic spectrum. light: shorter photon ______ and a higher photon _____. _____ is a measure of the mass of an object in a given volume. Think of the point exactly between the two slits. Contains the Cochlea, 1. includes three tiny bones called the hammer, the anvil, and the stirrup, 1. the part of the ear you can see what is the distance from one crest to another or from any point on the sine wave to the next corresponding point? This is the portion we call visible light. Describe the motion of the air particles in the sound diagram. (1) are a form of electromagnetic radiation. visible light and x rays both exhibit behaviors of particles and waves, what is this called? If a pixel displayed on a screen has a red DN of 127, a green DN of 127, and a blue DN of 127, what color is the pixel . what is the prefix and symbol for 10^-12? when converting J to eV do you multiply or divide? { Absorbance_and_Fluorescence_Analysis_of_NAD_and_NADH : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Titrations:_Simulations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Titrations_(McGuire)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Titrations_(Mullaugh)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Titrations_(Wenzel)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Titration_Simulation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acids,_Bases,_Buffers_and_Neutralization" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Acids_and_Bases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Activity_in_Chemical_Equilibrium_(Mullaugh)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Activity_in_Chemical_Equilibrium_(Oxley)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Analog_to_Digital_Conversion : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Analysis_of_Biochemical_Oxygen_Demand,_Phosphate_and_Nitrate" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Analyzing_Literature_Articles : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Atmospheric_Gases_\u2013_CO2_and_O3" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Back_Titration : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Beer\u2019s_Law" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Beer\u2019s_Law_Calculations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Biofuels_Titration : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Buffers : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Buret_Calibration_and_Stardardization_of_NaOH_Solution : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Calculating_the_pH_of_Solutions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Calibration : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Curves_(Mullaugh)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Curves_(Oxley)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Curves_(Venton)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Methods_(Gonzalez)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Methods_(Gray)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Methods_(Harris)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Calibration_Methods_(Hunter)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Case_Study:_Arsenic_Analysis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Case_Study:_Lead_in_Water" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Case_Study:_Morphine_and_its_Metabolites" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Case_Study:_Sampling_and_Sample_Preparation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chemical_Equilibrium_(McGuire)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chemical_Equilibrium_(Strein)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chemistry_of_Bread-Making" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Choosing_the_Right_Graph : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Chromatographic_Resolution : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Chromatography : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Comparing_Spectroscopic_Techniques : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Comparison_of_Phosphate_Analysis_Methods : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Concentration_and_Dilution : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Concentration_Calibration_Procedures : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Concentration_Determination : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Data_Analysis_and_Statistics : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Designing_an_Acid-Base_Titration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Development_of_a_Sampling_Plan : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Dilutions_and_Propagation_of_Uncertainty : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Dilutions_and_Volumetric_Glassware : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Echellette_Grating_(Griffith)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Echellette_Grating_(Hughey)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", EDTA_Chelation_and_Titrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Electrochemical_Cells : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Electrochemical_Sensor_Project : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Electrochemical_Titrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Electrochemistry : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Electrochemistry:_Basic_Concepts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Electrochemistry:_Introductory_Concepts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Elemental_Analysis_of_Ancient_Roman_Coins : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Error_and_Propagation_of_Error : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Error_and_Statistics : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Excel_Tutorial : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Excel_Workshop : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", External_Calibration_and_Propagation_of_Error : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Fast_Scan_Cyclic_Voltammetry : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Fick\u2019s_Laws" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Figures_of_Merit : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Fluorescence_pH_Curve : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Fourier_Transformation_of_Data : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "FT-IR_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Gas_Chromatographic_Columns : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Gas_Chromatographic_Detectors : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Gas_Chromatography : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gas_Chromatography:_End_of_Unit_Problem_Solving" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "GC-Electron_Capture_Detection:_Analysis_of_a_Literature_Article" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "GC-MS:_Performance_Enhancing_Drugs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "GC:_Temperature_Influence" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", GC_Elution_Order : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", GC_Retention_Order : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gravimetric_Analysis:_Calculations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gravimetric_Analysis_(Fry-Petit)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gravimetric_Analysis_(Heiss)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gravimetric_Analysis_(Hunter)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "HPLC_Case_Study:_Forensics_with_Chromatographic_Data_Set" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", HPLC_Retention_Order : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Immunoassays : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Internal_Standards_and_LOD : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Internal_Standards_and_Standard_Addition : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Introduction_to_Analytical_Chemistry_(Fry-Petit)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Introduction_to_Analytical_Chemistry_(Pompano)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Introduction_to_Chromatography : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Introduction_to_Mass_Spectrometry : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Ionic_Strength_and_Activity : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Limit_of_Detection : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Liquid-Liquid_Extraction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Analysis:_Mass_Spectrometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Article_Analysis:_Electrochemistry_(Pompano)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Article_Analysis:_Electrochemistry_(Scott)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Article_Analysis:_Fluorescence" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Article_Analysis:_HPLC_vs._GC-MS" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Literature_Article_Analysis:_Microfluidic_Field_Assays" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Mass_and_Charge_Balances : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Mass_Spectra_of_THMs_and_Fluorobenzene : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Mass_Spectrometry:_Analysis_of_a_Literature_Article" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Mass_Spectrometry:_Nitrogen_Rule" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Mass_Spectrometry:_Performance_Enhancing_Drugs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Mass_Spectrometry_Imaging : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Mass_Spectrometry_\u2013_DESI_vs_DART" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", MATHCAD_Tutorial : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Measurements_and_Uncertainty : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Measurement_Errors : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Metal_Complexation_Equilibria : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Metal_Complexation_Equilibria_(Wenzel)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Method_Validation:_Performance_Enhancing_Drugs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Neutralization_Reactions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "NMR_Spectroscopy_(Griffith)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "NMR_Spectroscopy_(Quinones-Fernandez)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Normal_Distribution_and_Statistics : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Nyquist_Frequency : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Partition_Coefficient_and_Chromatographic_Retention_Order : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Penny_Statistics_with_Data_Set : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Phytochemicals_in_Broccoli_Microgreens : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Polyprotic_Acid : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Polyprotic_Systems : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Potentiometry : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Propagation_of_Error_in_Solution_Preparation : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Propagation_of_Uncertainty_and_Titrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Qualitative_and_Quantitative_Analysis_via_GC-MS" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Quantitative_Analysis:_Nuts_and_Bolts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Quantitative_Fluorescence : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Recovery_Curves_and_Signal_Averaging : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Redox_Reactions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Sample_Introduction_in_Gas_Chromatography : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Sample_Prep:_Performance_Enhancing_Drugs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Sampling:_Performance_Enhancing_Drugs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Selection_of_Appropriate_Separation_Method : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Signals-to-Noise_Ratio" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Signals_and_Noise : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Signal_and_Noise : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Signal_Averaging : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Size_Exclusion_Chromatography_(Crawford,_Kloepper)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Size_Exclusion_Chromatography_(Liu)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", SI_Units_and_Significant_Figures : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solubility_and_Ionic_Strength_(Fry-Petit)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solubility_and_Ionic_Strength_(Scott)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solubility_Equilibria_(McGuire)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solubility_Equilibria_(Scott)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Solubility_Equilibria_and_Calculations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Solubility_Product : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Solutions_Preparation_and_Dilutions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Spectral_Data_Set_with_Suggested_Uses : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Standardization : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Standard_Addition : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Statistics:_Excel_Exercise" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Statistics_(Gray)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Statistics_(Mullaugh)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Statistics_(Witter)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Statistics_in_Chemical_Analysis : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Stock_Solution_and_Calibration_Standard_Preparation : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Titrimetry:_Analysis_of_Literature_Article" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Understanding_Radiative_Forcing:_Climate_Change" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Use_of_Glassware : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "UV//Vis_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Weak_Acid_Titration : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "Spectroscopy_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_Analytical_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_Analytical_Chemistry_II" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_General_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_Inorganic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_Organic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_Physical_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "Beer\u2019s Law", "license:ccbyncsa", "licenseversion:40", "authorname:asdl" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FAncillary_Materials%2FWorksheets%2FWorksheets%253A_Analytical_Chemistry_II%2FBeer%25E2%2580%2599s_Law, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), status page at https://status.libretexts.org.